
IBM 650 Emulator in Python Design
Topic Paper #4

Alex Laird
CS-3210-01

1/30/09
Survey of Programming Languages

Spring 2009
Computer Science, (319) 360-8771

alexdlaird@cedarville.edu

 Max Earn
On Time/Format 1

Correct 5

Peer
Reviewer

Clear 2
Concise 2

G
ra

di
ng

 R
ub

ric

Total 10 pts

ABSTRACT
This paper talks about my intended implementation design for an
IBM 650 emulator written in the Python programming language.

Keywords
IBM 650, Emulator, Python, Design

1. INTRODUCTION
Essentially, the emulator made will read an input stream (either
from the command line or from a specified file), parse the file into
organized commands (one command per line), execute each
individual command, and then produce the output (either to the
shell or to a specified file).

2. READING AND PARSING THE FILE
The file is read in line-by-line. Each line is parsed into individual
statements and executed. Each file has three sections: initial data
values, program instructions, and input data. Each section is
separated by +9999999999.

Each individual command is parsed into four executable parts.
The first +# or -# is the operation to be performed. The next three
digits is the memory location of the first operand. The next three
digits is the memory location of the second operand. The final
three digits is the memory location of the destination.

3. EXECUTION OF STATEMENTS
The execution functions are all elif statements reading the parsed
values from first symbol and digit of input; depending on what the

values are, different commands are executed. A list of commands
and their operations is shown in Figure 1.4 of McClenan IBM 650
PDF file. The execution is then done to the three provided
memory locations.

What would be memory locations on the IBM 650 will be
represented by an array in the Python emulator. When the entire
list of operations has been completed, the array can simply be
output in order.

4. OUTPUTTING RESULT
The output will be either to the shell, if no output file is specified,
or to a text file. A simple loop will run through the storage array
to print each value.
5. POTENTIAL PROBLEMS
Deciding whether to read in each line as an integer or as a string
may present problems. It will probably be easiest to read the lines
in as strings and parse them that way, then converting each parsed
set to integers.

6. CONCLUSIONS
The IBM 650 emulator will be a fairly simple application written
using Python. The brunt of the application work will be done in a
large set of elif statements. Simple read/write will be performed
on the intput/output statements, and data storage will be simple
enough into an array. In general, the emulator should be pretty
simple with only a few minor implementation roadblocks.

The In A

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Alex Laird, Cedarville University, Cedarville, Ohio, 45314
Copyright 2009 Alex Laird

